RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour.
نویسندگان
چکیده
We have probed the effects of altering buffer conditions on the behaviour of two aptamer RNAs for the bacterio-phage MS2 coat protein using site-specific substitution of 2'-deoxy-2-aminopurine nucleotides at key adenosine positions. These have been compared to the wild-type operator stem-loop oligonucleotide, which is the natural target for the coat protein. The fluorescence emission spectra show a position and oligonucleotide sequence dependence which appears to reflect local conformational changes. These are largely similar between the differing oligonucleotides and deviations can be explained by the individual features of each sequence. Recognition by coat protein is enhanced, unaffected or decreased depending on the site of substitution, consistent with the known protein-RNA contacts seen in crystal structures of the complexes. These data suggest that the detailed conformational dynamics of aptamers and wild-type RNA ligands for the same protein target are remarkably similar.
منابع مشابه
Functional recognition of fragmented operator sites by R17/MS2 coat protein, a translational repressor.
The R17/MS2 coat protein serves as a translational repressor of replicase by binding to a 19 nt RNA hairpin containing the Shine-Dalgarno sequence and the initiation codon of the replicase gene. We have explored the structural features of the RNA operator site that are necessary for efficient translational repression by the R17/MS2 coat protein in vivo . The R17/MS2 coat protein efficiently dir...
متن کاملThe MS2 coat protein shell is likely assembled under tension: a novel role for the MS2 bacteriophage A protein as revealed by small-angle neutron scattering.
Recombinant forms of the bacteriophage MS2 and its RNA-free (empty) MS2 capsid were analyzed in solution to determine if RNA content and/or the A (or maturation) protein play a role in the global arrangement of the virus protein shell. Analysis of the (coat) protein shell of recombinant versions of MS2 that lack the A protein revealed dramatic differences compared to wild-type MS2 in solution. ...
متن کاملCrystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments.
In MS2 assembly of phage particles results from an interaction between a coat protein dimer and a stem-loop of the RNA genome (the operator hairpin). Amino acid residues Thr45, which is universally conserved among the small RNA phages, and Thr59 are part of the specific RNA binding pocket and interact directly with the RNA; the former through a hydrogen bond, the latter through hydrophobic cont...
متن کاملInvestigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins.
We have determined the structures of complexes between the phage MS2 coat protein and variants of the replicase translational operator in order to explore the sequence specificity of the RNA-protein interaction. The 19-nt RNA hairpins studied have substitutions at two positions that have been shown to be important for specific binding. At one of these positions, -10, which is a bulged adenosine...
متن کاملTranslational repression by bacteriophage MS2 coat protein expressed from a plasmid. A system for genetic analysis of a protein-RNA interaction.
The coat protein of bacteriophage MS2 is a translational repressor. It inhibits the synthesis of the viral replicase by binding a specific RNA structure that contains the replicase translation initiation region. In order to begin a genetic dissection of the repressor activity of coat protein, a two-plasmid system has been constructed that expresses coat protein and a replicase-beta-galactosidas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2000